martes, 29 de septiembre de 2009

Unidad 5!!

CRITERIOS PARA DECIDIR LA HIBRIDACIÓN



1:- CRITERIO MULTIP
LICIDAD DE LOS ENLACES


Hay que observar la multiplicidad de los enlaces, esto es, cuántas uniones pi deben formarse. Para cada unión pi un átomo debe disponer un orbital p.


Dos uniones pi obligan a un átomo a tener 2 orbitales p, o sea que, la hibridación debe ser sp.

Una unión pi requiere un orbital p. Por lo tanto el átomo puede tener hibridación sp o sp2,pero no sp3 (esta no tiene orbitales p). La ambigüedad se resuelve mediante el siguiente criterio complementario.



2.-CRITERIO DE REPULSIÓN DE PAREJAS DE ELECTRONES


Las parejas de electrones, ya sean enlazantes o bién no enlazantes, se repelen por tener igual carga. Entonces el criterio obliga a dar el máximo ángulo de separación a todas las parejas de electrones.

En los graficos siguientes los electrones del átomo cuya hibridación tratamos de determinar los representamos como puntos azules y los electrones del átomo vecino con el que se enlaza como puntos rojos. Así, las parejas enlazantes se grafican como puntos azul y rojo indicando electrones que pertenecen al átomo en cuestión y al otro átomo respectivamente y las no enlazantes del átomo como un par de puntos azules.



Como se puede observar, si el número de parejas de electrones alrededor de un átomo es tres la hibridación es sp,

En cambio, si el número de parejas de electrones es cuatro la hibridación es sp2.

Cuando existen solamente uniones s la hibridación se determina sólo en base del criterio de repulsión de parejas.

Cuando hay sólo una unión s no hay hibridación.



Dos parejas de electrones la hibridación es sp , tres parejas de electrones la hibridación es sp2 y cuatro parejas de electrones la hibridación es sp3 .

OTRAS HIBRIDACIONES Y LAS PRINCIPALES GEOMETRIAS MOLECULARES


ALGUNAS APLICACIONES

lunes, 7 de septiembre de 2009

TIPOS DE COMPUESTOS FUNDAMENTALES

SU OBTENCIÓN FORMAL Y DENOMINACIÓN ACTUAL Y ANTIGUA

OXIDOS METALICOS

M 0 + O 0 2 ________ > M +m 2 O –2m

Ejemplos: Cu +12 O –2 Oxido de cobre I , antes Oxido cuproso
Cu +2 O –2 Oxido de cobre II , antes Oxido cúprico

OXIDOS NO METALICOS ( antes ANHIDRIDOS)

N 0 + O 0 2 _________> N +n2 O –2n

Ejemplos: C +2 O –2 Oxido de carbono II , antes Anhidrído carbonoso
C +4 O –22 Oxido de carbono IV, antes Anhidrído carbónico
Como se puede observar, la denominación antigua que es muy persistente, depende del Número de Oxidación con que interviene el elemento. Esta nomenclatura usa prefijos y terminaciones alrededor de la raíz del nombre del elemento de acuerdo al número de estados de oxidación que posee el elemento y a la posición, entre éstos, del número de oxidación en uso.
Así:
Número de estados 1 2 3 4
de Oxidación
hipo ------ oso hipo ------ oso
------- ------oso ------ oso ------ oso
------ico ------ ico ------ ico
per ------ ico
------- = raíz del nombre del elemento

LOS HIDRÓXIDOS (OXIDO METALICO+ AGUA)

M +m2 O -2m + m H+12 O-2 = 2 M+m ( O-2 H+1)m
Ejemplo:
Al +32 O -23 + 3 H+12 O-2 = 2 Al+3 ( O-2 H+1)3 ( Al ( OH)3 ) Oxido de Aluminio Hidróxido de Aluminio


LOS OXACIDOS ( OXIDO NO METALICO + AGUA)

N +n 2 O -2n + H+12 O -2 = H+12 N+n2 O-2n+1
Ejemplo:
S+6 O-2 3 + H+12 O–2 = H+12 S+6 O-24 ( H2 S O4 )
Anhídrido Sulfúrico Acido Sulfúrico

LOS HIDRACIDOS (HIDROGENO +NO METALES)
n H 02 + N 02 = 2 H+1n N – n
Ejemplo:
n H 02 + S 02 = 2 H+12 S – 2 ( H2 S )
Acido Sulf hídrico
LOS ACIDOS Y LAS BASES
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
H2O
H2O = H + + OH –
ión hidrógeno ión hidroxilo
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno
H2O
HA = H + + A –
ácido ión hidrógeno anión del ácido
Así se comportan los oxácidos y los hidrácidos:
Ejemplos:
H 2 S O 4 = 2 H + + SO4 –2
Ácido sulfúr ico Anión sulf ato (1)
Observar como la denominación del ácido se transforma para el anión
oso _____________> ito
ico _____________> ato
H 2 S = 2 H + + S –2
Ácido sulf hídrico Anión sulf uro
Observar como la denominación del ácido se transforma para el anión hídrico ___________> uro
BASES son sustancias de fórmula general BOH que se disocian en agua liberando el ión hidroxilo.
H20
BOH = B + + OH –
base catión de la base ión hidroxilo
Así se comportan los hidróxidos:
Ejemplo:
u ( O H ) 2 = Cu+2 + 2 OH -
catión cúprico (1)
Anión es un ión de carga negativa y Catión es un ión de carga positiva. Los nombres provienen de la Electroquímica

LAS SALES ( RESULTADO DE LA REACCION DE ACIDOS + BASES)
OXÁCIDOS + BASES = SAL + AGUA
m H+12 N+n2 O-2n+1 + 2 M+m ( O H )- m = M+m2 ( ( N+n2 O-2n+1 ) –2)m + 2m H2O
Ejemplo:
3 H+12 S+6 O -24 + 2 Al+3 ( O H)-3 = Al+32 ((S+6 O –24) -2)3 + 6 H2O
( 3 H2 S O4 + 2 Al ( O H) 3 = Al 2 (S O4) 3 + 6 H2O )
Acido Sulfúrico Hidróxido de Aluminio Sulfato de Aluminio Agua
HIDRACIDOS + BASES = SAL + AGUA
m H+1n N – n + n M+m ( O H )– m = M+mn N – nm + mn H 2 O
Ejemplo:
H+12 S–2 + 2 Al+3 ( O H ) -3 = Al +32 S– 23 + 6 H 2 0
( H2 S + 2 Al (OH )-3 = Al2 S3 + 6 H 2 0 )
Acido Sulfhídrico Hidróxido de Aluminio Sulfuro deAluminio Agua


LOS HIDRUROS ( IONES METALICOS CON IONES HIDRUROS)
M0 + m /2 H02 = M+m H -m
Ejemplo:
Mg0 + H02 = Mg+2 H–2 ( Mg H2 )
Hidruro de Magnesio

miércoles, 2 de septiembre de 2009

Mecanica cuantica ondulatoria



Efecto Compton





DUALISMO ONDA- PARTÍCULA







FOTÓN = ONDA EFECTO COMPTON ==> particula

ELECTRÓN = PARTÍCULA DIFRACCIÓN DE ELECTRONES (1927) ==> ONDA


DE BROGLIE " Todo cuerpo en movimiento tiene una onda asociada"
λ = h / m x v = h / p

PRINCIPIO DE INCERTIDUMBRE DE HEISSENBERG

Es imposible conocer simultáneamente la posición x y el momento p de un electrón
D x D p = l . h / l = h > 0

ECUACION ONDA PARTÍCULA DE SCHRODINGER


Ecuación diferencial de 2° orden para sistemas onda partícula, en tres dimensiones e independiente del tiempo donde:

h = constante de Planck

y = Amplitud de la onda

m = masa dela partícula

x,y,z = coordenadas de posición

V(x,y,z ) = Energía Potencial

E = Energía de la partícula

Resolver la ecuación es, lograr por integración, expresiones para:
y = f (x,y,z) ; E = g (x,y,z)

y 2 a Probabilidad de encontrar la partícula en x,y,z

El encontrar, mediante el cálculo, las zonas de alta probabilidad de encontrar la partícula equivale a determinar los orbitales.

La Ecuación de Schorodinger se aplica al átomo de Hidrógeno y se resuelve obteniendo expresiones para y y E del tipo trigonométricas. En estas expresiones aparecen los denominados números cuánticos n, l, y m cuyas combinaciones se asocian a zonas de alta probabilidad de encontrar el electrón u orbitales.