Un Mol es 6,023 10 23 unidades.
Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química, como recién lo dijimos, podemos medir cómodamente un mol de átomos de Vanadio o un mol de átomos de cualquier otro elemento en la balanza de una confitería.
Pero el Número de Avogadro de átomos es una cantidad tan grande de átomos o bién los átomos son tan pequeños y livianos que son magnitudes que desafían nuestra imaginación. Según nos hizo notar recientemente un colega, si tuvieramos una hilera de 1 mol de hormigas de 1mm cada una separadas cada una de la precedente por una distancia también de 1mm, la longitud de la hilera cubriría 1,2046 10 18 Km. Tal hilera cubriría mil doscientos setenta y ocho millones de veces la trayectoria circular de la Tierra alrededor del Sol.
NUEVA DEFINICIÓN DE PESO ATOMICO
El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento expresada gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de átomos
Es conveniente comprender la correspondencia entre los elementos del siguiente triángulo de conceptos.
EL MOL DE MOLECULAS
Volvamos a nuestra experiencia de recolección de Helio puesto que podemos sacar mucho más provecho de ella y coloquemos a nuestro sistema en situación comparativa con otros.
Recordemos que nuestra muestra de Helio gaseoso ocupa un volumen de 22,4 Litros medidos en TPE y hay en ella N átomos, que son también N moléculas, pues el Helio tiene la molécula monoatómica. ( He1 )
Tomemos idéntico volumen de otros gases por ejemplo cloro gasoso ( Cl2 ) y de metano ( CH4 ) medidos también en TPE. De acuerdo a lo establecido por Avogadro en su célebre hipótesis, en los tres sistemas hay igual número de moléculas. Esto quiere decir que en cada uno de los tres casos hay N moléculas. También quiere decir que en cada uno de los casos nos encontramos frente a un mol de moléculas de cada gas.
Podemos generalizar:
Un mol de moléculas de cualquier gas medido en TPE. ocupa un volumen de 22,4 Litros.
Recién hemos definido que la masa expresada en gramos de un mol de átomos es el Peso Atómico.
Ahora..... ¿Cuál es la masa expresada en gramos de 1 mol de moléculas? La respuesta a esta pregunta nos lleva a otra definición:
DEFINICIÓN DE PESO MOLECULAR
El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas
Otra vez es conveniente comprender la correspondencia entre los elementos de este nuevo triángulo de conceptos.
CALCULO DEL PESO MOLECULAR
Generalizando, si una Sustancia tiene por Fórmula AaBbCc........
A nivel submicroscópico su molécula está formada por a átomos de A, b átomos de B y c átomos de C etc...
y a nivel macroscópico el mol de moléculas está formada por a moles de átomos de A, b moles de átomos de B y c moles de átomos átomos de C etc... y de allí que el Peso Molecular se calcule con la siguiente fórmula.
Mr AaBbCc........ = a * Ar A + b * Ar B + c * Ar C +........
¿Cuánto vale el Peso molecular del Cloroformo CHCl3?
Mr CHCl3 = 1 *12 + 1 * 1 + 3 * 35,5 = 119,5 g/mol
También podemos generalizar importantes conceptos acerca de un doble significado, a nivel submicroscópico y a nivel macroscópico, de la notación química de Símbolos, Fórmulas y Ecuaciones.
Presentaremos este doble significado valiéndonos de representaciones gráficas para las entidades submicroscópicas y las representaciones gráficas ampliadas para los conceptos (de moles) usados a nivel macroscópico.
PROPIEDADES INTENSIVAS Son aquellas propiedades del sistema cuyo valor no depende del tamaño del mismo, es decir son independientes de la masa del sistema.
PROPIEDADES EXTENSIVAS Son aquellas propiedades del sistema cuyo valor sí depende del tamaño del mismo, es decir son dependientes de la masa del sistema.
LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.
Para dar adecuada respuesta a la pregunta planteada es necesario averiguar las relaciones matemáticas que expresan el comportamiento de las distintas variables que determinan el estado de un sistema gaseoso. Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:
n = Número de moles, V = Volumen, P = Presión y t = temperatura.
Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar:
Volumen Molar = V = V / n (L/mol)
Ley de Boyle
Volumen Molar vs. Presión
Ley de Charles
Volumen Molar vs. temperatura
Ambas leyes se pueden agrupar en una sóla expresión:
(V P)/( n T)= k1 k2 =R= 22,4(L)*1(atm)/1(mol)* 273,16 ( °K) = 0,082 (L atm / mol °K)
Esta relación corresponde a la a Ecuación de Estado de los Gases Ideales cuya expresión más común es :
PV = n R T donde R = 0,082 (L atm / mol °K)
Esta relación es aplicable a los gases reales dentro de márgenes no extremos de Presión y temperatura.
Reiterando la pregunta: ¿Cuál sería el valor del volumen del sistema y el valor de su densidad si las condiciones de Presión y Temperatura fueran cualesquieras otras, distintas de TPE?
¿Si por ejemplo la muestra de metano estuviera a 100 °C y 1000 mmHg. (1atm = 760 mmHg)?
V = nRT/P = 0,01(mol) 0,082 (L atm / mol °K) 373,16 °K / (1000 mmHg / 760 mmHg/atm) = 0,232 (L)
densidad P,T = masa / Volumen = 0,16 (g) / 0,232 ( L ) = 0,69 ( g / L )
Pero como ya hemos establecido, la densidad es una propiedad intensiva y debería poder calcularse de datos independientes del tamaño del sistema.
densidad P,T = masa / Volumen = n M r / ( n R T / P) = Mr P / R T
densidad P,T =16 ( g/mol)* (1000 (mmHg) / 760 (mmHg/atm)) / 0,082 (L atm / mol °K)* 373,16 °K = 0,69 ( g / L )
DETERMINACIÓN DE FÓRMULAS EMPÍRICAS Y MOLECULARES
Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.
ANALISIS QUÍMICO _ Ar__> FÓRMULA EMPÍRICA _Mr_> FÓRMULA MOLECULAR
Composición % Relación en el número de Atomos Número Exacto de átomos
Los datos de composición de un compuesto entregados por el Análisis Químico a la forma de composición porcentual de los elementos, es por lo general, el punto de partida. Como ya hemos establecido éstas magnitudes son de tipo Intensivas. Sin embargo, para poder calcular el número de moles de átomos, que es esencialmente de tipo extensivo, es preciso trabajar con un sistema de tamaño definido y adecuado a los datos y cálculos. Esto es, nos damos una Base de Cálculo (B.C.),por lo general 100 g. de la Sustancia, y así trabajamos con masas determinadas de los diferentes elementos.
Fórmula Molecular
La Fórmula Molecular indica la cantidad exacta de átomos de cada elemento en la molécula. Esa cantidad exacta de átomos debe mantener la proporción observada en la fórmula empírica, por lo tanto, la fórmula Molecular debe ser (CH2 )m donde m es un número entero por determinar.
Si m = 1 Mr CH2 = 14 * 1 (g/mol)
Si m = 2 Mr ( CH2 ) 2 = 14 * 2 (g/mol)
Si m = 3 Mr ( CH2 ) 3 = 14 * 3 (g/mol)
Si m = m Mr ( CH2 ) m = Mr Empírico * m (g/mol)
m = Mr / "Mr" Empírico
NOTA IMPORTANTE: Cuando se calcula la relación o proporción en que se encuentran los moles de átomos no siempre resulta ser de números enteros, en ese caso la relación debe ser llevada a números enteros por amplificación o, con decimales muy próximos a enteros, por aproximación. Los siguientes ejemplos son ilustrativos:
relación
A 1 * 2 = 2
B 2,5 * 2 = 5
relación
A 1 * 3 = 3
B 1,33 * 3 = 4
relación
A 1 * 4 = 2
B 2,25 * 4 = 9
relación
A 1 * 5 = 5
B 1,20 * 5 = 6
relación
A 1
B 2.9 = 3
No hay comentarios:
Publicar un comentario